

 Navigation

 	
 index

 	
 next |

 	Backbone.Marionette 1.0.0-beta3 documentation

Welcome to Backbone.Marionette’s documentation!

Contents:

	Marionette.Application.module
	Basic Usage

	Starting And Stopping Modules

	Defining Sub-Modules With . Notation

	Module Definitions

	The Module’s this Argument

	Custom Arguments

	Splitting A Module Definition Apart

	Marionette.Application
	Documentation Index

	Adding Initializers

	Application Event

	Starting An Application

	app.vent: Event Aggregator

	Regions And The Application Object

	Marionette.AppRouter
	Documentation Index

	Configure Routes

	Specify A Controller

	Marionette.Callbacks
	Documentation Index

	Basic Usage

	Specify Context Per-Callback

	Advanced / Async Use

	Marionette.CollectionView
	Documentation Index

	CollectionView’s itemView

	CollectionView’s itemViewOptions

	CollectionView’s emptyView

	CollectionView’s buildItemView

	Callback Methods

	CollectionView Events

	CollectionView render

	CollectionView: Automatic Rendering

	CollectionView: Re-render Collection

	CollectionView’s appendHtml

	CollectionView close

	Marionette.commands
	Documentation Index

	Register A Command

	Execute A Command

	Remove / Replace Commands

	Marionette.CompositeView
	Documentation Index

	Composite Model template

	CompositeView’s itemViewContainer

	CompositeView’s appendHtml

	Recursive By Default

	Model And Collection Rendering

	Events And Callbacks

	Organizing ui elements

	modelEvents and collectionEvents

	Marionette.Controller
	Documentation Index

	Basic Use

	On The Name ‘Controller’

	Marionette.Renderer
	Documentation Index

	Basic Usage

	Pre-compiled Templates

	Custom Template Selection And Rendering

	Using Pre-compiled Templates

	Marionette.EventAggregator
	Documentation Index

	Basic Usage

	BindTo

	Decoupling With An Event-Driven Architecture

	Marionette.EventBinder
	Documentation Index

	Bind Events

	Unbind A Single Event

	Unbind All Events

	When To Use EventBinder vs on Handlers

	Marionette functions
	Documentation Index

	Marionette.addEventBinder

	Marionette.createObject

	Marionette.extend

	Marionette.getOption

	Marionette.triggerMethod

	Marionette.ItemView
	Documentation Index

	ItemView render

	Events and Callback Methods

	ItemView serializeData

	Organizing ui elements

	modelEvents and collectionEvents

	Marionette.Layout
	Documentation Index

	Basic Usage

	Region Availability

	Re-Rendering A Layout

	Nested Layouts And Views

	Closing A Layout

	Custom Region Type

	Marionette.Region
	Documentation Index

	Defining An Application Region

	Initialize A Region With An el

	Basic Use

	reset A Region

	Set How View’s el Is Attached

	Attach Existing View

	Region Events And Callbacks

	Custom Region Types

	Marionette.RequestResponse
	Documentation Index

	Register A Request Handler

	Request A Response

	Remove / Replace A Request Handler

	Marionette.TemplateCache
	Documentation Index

	Basic Usage

	Override Template Retrieval

	Clear Items From cache

	Marionette.View
	Documentation Index

	Binding To View Events

	ItemView close

	View.triggers

	View.modelEvents and View.collectionEvents

	View.serializeData

	View.bindUIElements

	View.templateHelpers

	Change Which Template Is Rendered For A View

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Derick Bailey.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Backbone.Marionette 1.0.0-beta3 documentation

Marionette.Application.module

Marionette allows you to define a module within your application,
including sub-modules hanging from that module. This is useful for
creating modular, encapsulated applications that are split apart in to
multiple files.

Marionette’s module allow you to have unlimited sub-modules hanging off
your application, and serve as an event aggregator in themselves.

Basic Usage

A module is defined directly from an Application object as the specified
name:

var MyApp = new Backbone.Marionette.Application();

var myModule = MyApp.module("MyModule");

MyApp.MyModule; // => a new Marionette.Application object

myModule === MyApp.MyModule; // => true

If you specify the same module name more than once, the first instance
of the module will be retained and a new instance will not be created.

Starting And Stopping Modules

Modules can be started and stopped independently of the application and
of each other. This allows them to be loaded asynchronously, and also
allows them to be shut down when they are no longer needed. This also
facilitates easier unit testing of modules in isolation as you can start
only the module that you need in your tests.

Starting Modules

Starting a module is done in one of two ways:

	Automatically with the parent module (or Application) .start()
method

	Manually call the .start() method on the module

In this example, the module will be started automatically with the
parent application object’s start call:

MyApp = new Backbone.Marionette.Application();

MyApp.module("Foo", function(){

 // module code goes here

});

MyApp.start();

Note that modules loaded and defined after the app.start() call will
still be started automatically.

Preventing Auto-Start Of Modules

If you wish to manually start a module instead of having the application
start it, you can tell the module definition not to start with the
parent:

var fooModule = MyApp.module("Foo", { startWithParent: false, define:
 function(){ // module code goes here } });

// start the app without starting the module MyApp.start();

// later, start the module fooModule.start();

Note the use of an object literal instead of just a function to define
the module, and the presence of the startWithParent attribute, to
tell it not to start with the application. Then to start the module, the
module’s start method is manually called.

You can also grab a reference to the module at a later point in time, to
start it:

MyApp.module("Foo", { startWithParent: false, define: function(){
 /*...*/ }
});

// start the module by getting a reference to it first
MyApp.module("Foo").start();

Starting Sub-Modules With Parent

Starting of sub-modules is done in a depth-first hierarchy traversal.
That is, a hierarchy of Foo.Bar.Baz will start Baz first, then
Bar, and finally `Foo.

Submodules default to starting with their parent module.

MyApp.module("Foo", function(){...}); MyApp.module("Foo.Bar",
function(){...});

MyApp.start();

In this example, the “Foo.Bar” module will be started with the call to
MyApp.start() because the parent module, “Foo” is set to start with
the app.

A sub-module can override this behavior by setting it’s
startWithParent to false. This prevents it from being started by the
parent’s start call.

MyApp.module("Foo", define: function(){...});

MyApp.module("Foo.Bar", { startWithParent: true, define: function(){...}});

MyApp.start();

Now the module “Foo” will be started, but the sub-module “Foo.Bar” will
not be started.

A sub-module can still be started manually, with this configuration:

MyApp.module("Foo.Bar").start();

Stopping Modules

A module can be stopped, or shut down, to clear memory and resources
when the module is no longer needed. Like starting of modules, stopping
is done in a depth-first hierarchy traversal. That is, a hierarchy of
modules like Foo.Bar.Baz will stop Baz first, then Bar, and
finally Foo.

To stop a module and it’s children, call the stop() method of a
module.

MyApp.module("Foo").stop();

Modules are not automatically stopped by the application. If you wish to
stop one, you must call the stop method on it. The exception to this
is that stopping a parent module will stop all of it’s sub-modules.

MyApp.module("Foo.Bar.Baz");

MyApp.module("Foo").stop();

This call to stop causes the Bar and Baz modules to both be
stopped as they are sub-modules of Foo. For more information on
defining sub-modules, see the section “Defining Sub-Modules With .
Notation”.

Defining Sub-Modules With . Notation

Sub-modules or child modules can be defined as a hierarchy of modules
and sub-modules all at once:

MyApp.module("Parent.Child.GrandChild");

MyApp.Parent; // => a valid module object MyApp.Parent.Child; // => a
valid module object MyApp.Parent.Child.GrandChild; // => a valid module
object

When defining sub-modules using the dot-notation, the parent modules do
not need to exist. They will be created for you if they don’t exist. If
they do exist, though, the existing module will be used instead of
creating a new one.

Module Definitions

You can specify a callback function to provide a definition for the
module. Module definitions are invoked immediately on calling module
method.

The module definition callback will receive 6 parameters:

	The module itself

	The Parent module, or Application object that .module was called
from

	Backbone

	Backbone.Marionette

	jQuery

	Underscore

	Any custom arguments

You can add functions and data directly to your module to make them
publicly accessible. You can also add private functions and data by
using locally scoped variables.

MyApp.module("MyModule", function(MyModule, MyApp, Backbone, Marionette,
 $, _){

 // Private Data And Functions // --------------------------

 var myData = "this is private data";

 var myFunction = function(){ console.log(myData); }

 // Public Data And Functions // -------------------------

 MyModule.someData = "public data";

 MyModule.someFunction = function(){ console.log(MyModule.someData); }
});

console.log(MyApp.MyModule.someData); //=> public data
MyApp.MyModule.someFunction(); //=> public data

Module Initializers

Modules have initializers, similarly to Application objects. A
module’s initializers are run when the module is started.

MyApp.module("Foo", function(Foo){

 Foo.addInitializer(function(){
 // initialize and start the module's running code, here.
 });

});

Any way of starting this module will cause it’s initializers to run. You
can have as many initializers for a module as you wish.

Module Finalizers

Modules also have finalizers that are run when a module is stopped.

MyApp.module("Foo", function(Foo){

 Foo.addFinalizer(function(){
 // tear down, shut down and clean up the module, here
 });

});

Calling the stop method on the module will run all that module’s
finalizers. A module can have as many finalizers as you wish.

The Module’s this Argument

The module’s this argument is set to the module itself.

MyApp.module("Foo", function(Foo){ this === Foo; //=> true });

Custom Arguments

You can provide any number of custom arguments to your module, after the
module definition function. This will allow you to import 3rd party
libraries, and other resources that you want to have locally scoped to
your module.

MyApp.module("MyModule", function(MyModule, MyApp, Backbone, Marionette, $,
 _, Lib1, Lib2, LibEtc){

 // Lib1 === LibraryNumber1; // Lib2 === LibraryNumber2; // LibEtc ===
 LibraryNumberEtc;

}, LibraryNumber1, LibraryNumber2, LibraryNumberEtc);

Splitting A Module Definition Apart

Sometimes a module gets to be too long for a single file. In this case,
you can split a module definition across multiple files:

MyApp.module("MyModule", function(MyModule){
 MyModule.definition1 = true; });

MyApp.module("MyModule", function(MyModule){ MyModule.definition2 =
true; });

MyApp.MyModule.definition1; //=> true MyApp.MyModule.definition2; //=>
true

 Copyright 2012, Derick Bailey.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Backbone.Marionette 1.0.0-beta3 documentation

Marionette.Application

The Backbone.Marionette.Application object is the hub of your
composite application. It organizes, initializes and coordinate the
various pieces of your app. It also provides a starting point for you to
call into, from your HTML script block or from your JavaScript files
directly if you prefer to go that route.

The Application is meant to be instantiated directly, although you
can extend it to add your own functionality.

js MyApp = new Backbone.Marionette.Application();

Documentation Index

	Adding Initializers

	Application Event

	Starting An Application

	app.vent: Event Aggregator

	Regions And The Application
Object

	jQuery Selector

	Custom Region Type

	Custom Region Type And Selector

	Removing Regions

Adding Initializers

Your application needs to do useful things, like displaying content in
your regions, starting up your routers, and more. To accomplish these
tasks and ensure that your Application is fully configured, you can
add initializer callbacks to the application.

```js MyApp.addInitializer(function(options){ // do useful stuff here
var myView = new MyView({ model: options.someModel });
MyApp.mainRegion.show(myView); });

MyApp.addInitializer(function(options){ new MyAppRouter();
Backbone.history.start(); }); ```

These callbacks will be executed when you start your application, and
are bound to the application object as the context for the callback. In
other words, this is the MyApp object, inside of the initializer
function.

The options parameters is passed from the start method (see
below).

Initializer callbacks are guaranteed to run, no matter when you add them
to the app object. If you add them before the app is started, they will
run when the start method is called. If you add them after the app
is started, they will run immediately.




Application Event

The Application object raises a few events during its lifecycle,
using the Marionette.triggerMethod
function. These events can be used to do additional processing of your
application. For example, you may want to pre-process some data just
before initialization happens. Or you may want to wait until your entire
application is initialized to start the Backbone.history.

The events that are currently triggered, are:


	**”initialize:before” / onInitializeBefore **: fired just
before the initializers kick off

	**”initialize:after” / onInitializeAfter **: fires just after
the initializers have finished

	“start” / ``onStart``: fires after all initializers and after the
initializer events



```js MyApp.on(“initialize:before”, function(options){
options.moreData = “Yo dawg, I heard you like options so I put some
options in your options!” });

MyApp.on(“initialize:after”, function(options){ if (Backbone.history){
Backbone.history.start(); } }); ```

The options parameter is passed through the start method of the
application object (see below).

Starting An Application

Once you have your application configured, you can kick everything off
by calling: MyApp.start(options).

This function takes a single optional parameter. This parameter will be
passed to each of your initializer functions, as well as the initialize
events. This allows you to provide extra configuration for various parts
of your app, at initialization/start of the app, instead of just at
definition.

```js var options = { something: “some value”, another:
“#some-selector” };

MyApp.start(options); ```




app.vent: Event Aggregator

Every application instance comes with an instance of
Marionette.EventAggregator called app.vent.

```js MyApp = new Backbone.Marionette.Application();

MyApp.vent.on(“foo”, function(){ alert(“bar”); });

MyApp.vent.trigger(“foo”); // => alert box “bar” ```

See the
`Marionette.EventAggregator <./marionette.eventaggregator.md>`_
documentation for more details.

Regions And The Application Object

Marionette’s Region objects can be directly added to an application
by calling the addRegions method.

There are three syntax forms for adding a region to an application
object.

jQuery Selector

The first is to specify a jQuery selector as the value of the region
definition. This will create an instance of a Marionette.Region
directly, and assign it to the selector:

js MyApp.addRegions({ someRegion: "#some-div", anotherRegion: "#another-div" });

Custom Region Type

The second is to specify a custom region type, where the region type has
already specified a selector:

```js MyCustomRegion = Marionette.Region.extend({ el: “#foo” });

MyApp.addRegions({ someRegion: MyCustomRegion }); ```




Custom Region Type And Selector

The third method is to specify a custom region type, and a jQuery
selector for this region instance, using an object literal:

```js MyCustomRegion = Marionette.Region.extend({});

MyApp.addRegions({

someRegion: { selector: “#foo”, regionType: MyCustomRegion },

anotherRegion: { selector: “#bar”, regionType: MyCustomRegion }

}); ```

Removing Regions

Regions can also be removed with the removeRegion method, passing in
the name of the region to remove as a string value:

js MyApp.removeRegion('someRegion');

Removing a region will properly close it before removing it from the
application object.

For more information on regions, see the region
documentation

 Copyright 2012, Derick Bailey.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Backbone.Marionette 1.0.0-beta3 documentation

Marionette.AppRouter

Reduce the boilerplate code of handling route events and then calling a
single method on another object. Have your routers configured to call
the method on your object, directly.

Documentation Index

	Configure Routes

	Specify A Controller

Configure Routes

Configure an AppRouter with appRoutes. The route definition is
passed on to Backbone’s standard routing handlers. This means that you
define routes like you normally would. Instead of providing a callback
method that exists on the router, though, you provide a callback method
that exists on the controller that you specify for the router
instance (see below).

```js MyRouter = Backbone.Marionette.AppRouter.extend({ //
“someMethod” must exist at controller.someMethod appRoutes: {
“some/route”: “someMethod” },

/* standard routes can be mixed with appRoutes/Controllers above */
routes : { “some/otherRoute” : “someOtherMethod” }, someOtherMethod :
function(){ // do something here. }

}); ```

You can also add standard routes to an AppRouter, with methods on the
router.




Specify A Controller

App routers can only use one controller object. You can either
specify this directly in the router definition:

```js someController = { someMethod: function(){ /.../ } };

Backbone.Marionette.AppRouter.extend({ controller: someController });
```

Or in a parameter to the constructor:

```js myObj = { someMethod: function(){ /.../ } };

new MyRouter({ controller: myObj }); ```

Or

The object that is used as the controller has no requirements, other
than it will contain the methods that you specified in the
appRoutes.

It is recommended that you divide your controller objects into smaller
pieces of related functionality and have multiple routers / controllers,
instead of just one giant router and controller.

 Copyright 2012, Derick Bailey.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Backbone.Marionette 1.0.0-beta3 documentation

Marionette.Callbacks

The Callbacks object assists in managing a collection of callback
methods, and executing them, in an async-safe manner.

There are only two methods:

	add

	run

The add method adds a new callback to be executed later.

The run method executes all current callbacks in, using the
specified context for each of the callbacks, and supplying the provided
options to the callbacks.

Documentation Index

	Basic Usage

	Specify Context Per-Callback

	Advanced / Async Use

Basic Usage

```js var callbacks = new Backbone.Marionette.Callbacks();

callbacks.add(function(options){ alert(“I’m a callback with ” +
options.value + ”!”); });

callbacks.run({value: “options”}, someContext); ```

This example will display an alert box that says “I’m a callback with
options!”. The executing context for each of the callback methods has
been set to the someContext object, which is an optional parameter
that can be any valid JavaScript object.




Specify Context Per-Callback

You can optionally specify the context that you want each callback to be
executed with, when adding a callback:

```js var callbacks = new Backbone.Marionette.Callbacks();

callbacks.add(function(options){ alert(“I’m a callback with ” +
options.value + ”!”);

// specify callback context as second parameter }, myContext);

// the someContext context is ignore by the above callback
callbacks.run({value: “options”}, someContext); ```

This will run the specified callback with the myContext object set
as this in the callback, instead of someContext.

Advanced / Async Use

The Callbacks executes each callback in an async-friendly manner,
and can be used to facilitate async callbacks. The
Marionette.Application object uses Callbacks to manage
initializers (see above).

It can also be used to guarantee callback execution in an event driven
scenario, much like the application initializers.

 Copyright 2012, Derick Bailey.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Backbone.Marionette 1.0.0-beta3 documentation

Marionette.CollectionView

The CollectionView will loop through all of the models in the
specified collection, render each of them using a specified
itemView, then append the results of the item view’s el to the
collection view’s el.

Documentation Index

	CollectionView’s ``itemView` <#collectionviews-itemview>`_

	CollectionView’s
``itemViewOptions` <#collectionviews-itemviewoptions>`_

	CollectionView’s ``emptyView` <#collectionviews-emptyview>`_

	CollectionView’s
``buildItemView` <#collectionviews-builditemview>`_

	Callback Methods

	onBeforeRender callback

	onRender callback

	onItemAdded callback

	onBeforeClose callback

	onClose callback

	CollectionView Events

	“before:render” / onBeforeRender
event

	“render” / onRender event

	“before:close” / onBeforeClose
event

	“closed” / “collection:closed”
event

	“item:added” / onItemAdded

	“item:removed” / onItemRemoved

	“itemview:*” event bubbling from child
views

	CollectionView render

	CollectionView: Automatic
Rendering

	CollectionView: Re-render
Collection

	CollectionView’s appendHtml

	CollectionView close

CollectionView’s itemView

Specify an itemView in your collection view definition. This must be
a Backbone view object definition (not instance). It can be any
Backbone.View or be derived from Marionette.ItemView.

```js MyItemView = Backbone.Marionette.ItemView.extend({});

Backbone.Marionette.CollectionView.extend({ itemView: MyItemView });
```

Alternatively, you can specify an itemView in the options for the
constructor:

```js MyCollectionView =
Backbone.Marionette.CollectionView.extend({...});

new MyCollectionView({ itemView: MyItemView }); ```

If you do not specify an itemView, an exception will be thrown
stating that you must specify an itemView.

If you need a view specific to your model, you can override
getItemView:

js Backbone.Marionette.CollectionView.extend({ getItemView: function(item) { // some logic to calculate which view to return return someItemSpecificView; } })




CollectionView’s itemViewOptions

There may be scenarios where you need to pass data from your parent
collection view in to each of the itemView instances. To do this,
provide a itemViewOptions definition on your collection view as an
object literal. This will be passed to the constructor of your itemView
as part of the options.

```js ItemView = Backbone.Marionette.ItemView({ initialize:
function(options){ console.log(options.foo); // => “bar” } });

CollectionView = Backbone.Marionette.CollectionView({ itemView:
ItemView,

itemViewOptions: { foo: “bar” } }); ```

You can also specify the itemViewOptions as a function, if you need
to calculate the values to return at runtime. The model will be passed
into the function should you need access to it when calculating
itemViewOptions. The function must return an object, and the
attributes of the object will be copied to the itemView instance’
options.

js CollectionView = Backbone.Marionette.CollectionView({ itemViewOptions: function(model) { // do some calculations based on the model return { foo: "bar" } } });

CollectionView’s emptyView

When a collection has no items, and you need to render a view other than
the list of itemViews, you can specify an emptyView attribute on
your collection view.

```js NoItemsView = Backbone.Marionette.ItemView.extend({ template:
“#show-no-items-message-template” });

Backbone.Marionette.CollectionView.extend({ // ...

emptyView: NoItemsView }); ```

This will render the emptyView and display the message that needs to
be displayed when there are no items.




CollectionView’s buildItemView

When a custom view instance needs to be created for the itemView
that represents an item, override the buildItemView method. This
method takes three parameters and returns a view instance to be used as
the item view.

js buildItemView: function(item, ItemViewType, itemViewOptions){ // build the final list of options for the item view type var options = _.extend({model: item}, itemViewOptions); // create the item view instance var view = new ItemViewType(options); // return it return view; },




Callback Methods

There are several callback methods that can be provided on a
CollectionView. If they are found, they will be called by the view’s
base methods. These callback methods are intended to be handled within
the view definition directly.


onBeforeRender callback

A onBeforeRender callback will be called just prior to rendering the
collection view.

js Backbone.Marionette.CollectionView.extend({ onBeforeRender: function(){ // do stuff here } });




onRender callback

After the view has been rendered, a onRender method will be called.
You can implement this in your view to provide custom code for dealing
with the view’s el after it has been rendered:

js Backbone.Marionette.CollectionView.extend({ onRender: function(){ // do stuff here } });




onItemAdded callback

This callback function allows you to know when an item / item view
instance has been added to the collection view. It provides access to
the view instance for the item that was added.

js Backbone.Marionette.CollectionView.extend({ onItemAdded: function(itemView){ // work with the itemView instance, here } });




onBeforeClose callback

This method is called just before closing the view.

js Backbone.Marionette.CollectionView.extend({ onBeforeClose: function(){ // do stuff here } });




onClose callback

This method is called just after closing the view.

js Backbone.Marionette.CollectionView.extend({ onClose: function(){ // do stuff here } });






CollectionView Events

There are several events that will be triggered during the life of a
collection view. Each of these events is called with the
Marionette.triggerMethod function, which
calls a corresponding “on{EventName}” method on the view instance.


“before:render” / onBeforeRender event

Triggers just prior to the view being rendered. Also triggered as
“collection:before:render” / onCollectionBeforeRender.

```js MyView = Backbone.Marionette.CollectionView.extend({...});

var myView = new MyView();

myView.on(“before:render”, function(){ alert(“the collection view is
about to be rendered”); });

myView.render(); ```

“render” / onRender event

A “collection:rendered” / onCollectionRendered event will also be
fired. This allows you to add more than one callback to execute after
the view is rendered, and allows parent views and other parts of the
application to know that the view was rendered.

```js MyView = Backbone.Marionette.CollectionView.extend({...});

var myView = new MyView();

myView.on(“render”, function(){ alert(“the collection view was
rendered!”); });

myView.on(“collection:rendered”, function(){ alert(“the collection view
was rendered!”); });

myView.render(); ```




“before:close” / onBeforeClose event

Triggered just before closing the view. A “collection:before:close” /
onCollectionBeforeClose event will also be fired

```js MyView = Backbone.Marionette.CollectionView.extend({...});

var myView = new MyView();

myView.on(“collection:before:close”, function(){ alert(“the collection
view is about to be closed”); });

myView.close(); ```

“closed” / “collection:closed” event

Triggered just after closing the view, both with corresponding method
calls.

```js MyView = Backbone.Marionette.CollectionView.extend({...});

var myView = new MyView();

myView.on(“collection:closed”, function(){ alert(“the collection view is
now closed”); });

myView.close(); ```




“item:added” / onItemAdded

Triggered just after creating a new itemView instance for an item that
was added to the collection, but before the view is rendered and added
to the DOM.

js cv.on("item:added", function(viewInstance){ // ... });




“item:removed” / onItemRemoved

Triggered after an itemView instance has been closed and removed, when
it’s item was deleted or removed from the collection.

js cv.on("item:removed", function(viewInstance){ // ... });




“itemview:*” event bubbling from child views

When an item view within a collection view triggers an event, that event
will bubble up through the parent collection view, with “itemview:”
prepended to the event name.

That is, if a child view triggers “do:something”, the parent collection
view will then trigger “itemview:do:something”.

```js // set up basic collection var myModel = new MyModel(); var
myCollection = new MyCollection(); myCollection.add(myModel);

// get the collection view in place colView = new CollectionView({
collection: myCollection }); colView.render();

// bind to the collection view’s events that were bubbled // from the
child view colView.on(“itemview:do:something”, function(childView, msg){
alert(“I said, ‘” + msg + “’”); });

// hack, to get the child view and trigger from it var childView =
colView.children[myModel.cid]; childView.trigger(“do:something”, “do
something!”); ```

The result of this will be an alert box that says “I said, ‘do
something!’”.

Also note that you would not normally grab a reference to the child view
the way this is showing. I’m merely using that hack as a way to
demonstrate the event bubbling. Normally, you would have your item view
listening to DOM events or model change events, and then triggering an
event of it’s own based on that.

CollectionView render

The render method of the collection view is responsible for
rendering the entire collection. It loops through each of the items in
the collection and renders them individually as an itemView.

```js MyCollectionView =
Backbone.Marionette.CollectionView.extend({...});

new MyCollectionView().render().done(function(){ // all of the children
are now rendered. do stuff here. }); ```




CollectionView: Automatic Rendering

The collection view binds to the “add”, “remove” and “reset” events of
the collection that is specified.

When the collection for the view is “reset”, the view will call
render on itself and re-render the entire collection.

When a model is added to the collection, the collection view will render
that one model in to the collection of item views.

When a model is removed from a collection (or destroyed / deleted), the
collection view will close and remove that model’s item view.




CollectionView: Re-render Collection

If you need to re-render the entire collection, you can call the
view.render method. This method takes care of closing all of the
child views that may have previously been opened.




CollectionView’s appendHtml

By default the collection view will call jQuery’s .append to move
the HTML contents from the item view instance in to the collection
view’s el.

You can override this by specifying an appendHtml method in your
view definition. This method takes two parameters and has no return
value.

```js Backbone.Marionette.CollectionView.extend({

appendHtml: function(collectionView, itemView, index){
collectionView.$el.prepend(itemView.el); }

}); ```

The first parameter is the instance of the collection view that will
receive the HTML from the second parameter, the current item view
instance.

The third parameter, index, is the index of the model that this
itemView instance represents, in the collection that the model came
from. This is useful for sorting a collection and displaying the sorted
list in the correct order on the screen.

CollectionView close

CollectionView implements a close method, which is called by the
region managers automatically. As part of the implementation, the
following are performed:

	unbind all bindTo events

	unbind all custom view events

	unbind all DOM events

	unbind all item views that were rendered

	remove this.el from the DOM

	call an onClose event on the view, if one is provided

By providing an onClose event in your view definition, you can run
custom code for your view that is fired after your view has been closed
and cleaned up. This lets you handle any additional clean up code
without having to override the close method.

js Backbone.Marionette.CollectionView.extend({ onClose: function(){ // custom cleanup or closing code, here } });

 Copyright 2012, Derick Bailey.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Backbone.Marionette 1.0.0-beta3 documentation

Marionette.commands

An application level command execution system. This allows components in
an application to state that some work needs to be done, but without
having to be explicitly coupled to the component that is performing the
work.

No response is allowed from the execution of a command. It’s a
“fire-and-forget” scenario.

Facilitated by
Backbone.Wreqr [https://github.com/marionettejs/backbone.wreqr]‘s
Commands object.

Documentation Index

	Register A Command

	Execute A Command

	Remove / Replace Commands

Register A Command

To register a command, call App.commands.addHandler and provide a
name for the command to handle, and a callback method.

```js var App = new Marionette.Application();

App.commands.addHandler(“foo”, function(bar){ console.log(bar); });
```


Execute A Command

To execute a command, either call App.commands.execute or the more
direct route of App.execute, providing the name of the command to
execute and any parameters the command needs:

js App.execute("foo", "baz"); // outputs "baz" to the console, from command registered above

Remove / Replace Commands

To remove a command, call App.commands.removeHandler and provide the
name of the command to remove.

To remove all commands, call App.commands.removeAllHandlers().

To replace a command, simply register a new handler for an existing
command name. There can be only one command handler for a given command
name.

 Copyright 2012, Derick Bailey.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Backbone.Marionette 1.0.0-beta3 documentation

Marionette.CompositeView

A CompositeView extends from CollectionView to be used as a
composite view for scenarios where it should represent both a branch and
leaf in a tree structure, or for scenarios where a collection needs to
be rendered within a wrapper template.

For example, if you’re rendering a treeview control, you may want to
render a collection view with a model and template so that it will show
a parent item with children in the tree.

You can specify a modelView to use for the model. If you don’t
specify one, it will default to the Marionette.ItemView.

```js CompositeView = Backbone.Marionette.CompositeView.extend({
template: “#leaf-branch-template” });

new CompositeView({ model: someModel, collection: someCollection });
```

For more examples, see my blog post on using the composite
view [http://lostechies.com/derickbailey/2012/04/05/composite-views-tree-structures-tables-and-more/]

Documentation Index

	Composite Model ``template` <#composite-model-template>`_

	CompositeView’s
``itemViewContainer` <#compositeviews-itemviewcontainer>`_

	CompositeView’s ``appendHtml` <#compositeviews-appendhtml>`_

	Recursive By Default

	Model And Collection Rendering

	Events And Callbacks

	Organizing ui elements

	modelEvents and
collectionEvents

Composite Model template

When a CompositeView is rendered, the model will be rendered
with the template that the view is configured with. You can override
the template by passing it in as a constructor option:

js new MyComp({ template: "#some-template" });

CompositeView’s itemViewContainer

By default the composite view uses the same appendHtml method that
the collection view prov